Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Machine learning techniques have been widely used and demonstrate promising performance in many software security tasks such as software vulnerability prediction. However, the class ratio within software vulnerability datasets is often highly imbalanced (since the percentage of observed vulnerability is usually very low). Goal: To help security practitioners address software security data class imbalanced issues and further help build better prediction models with resampled datasets. Method: We introduce an approach called Dazzle which is an optimized version of conditional Wasserstein Generative Adversarial Networks with gradient penalty (cWGAN-GP). Dazzle explores the architecture hyperparameters of cWGAN-GP with a novel optimizer called Bayesian Optimization. We use Dazzle to generate minority class samples to resample the original imbalanced training dataset. Results: We evaluate Dazzle with three software security datasets, i.e., Moodle vulnerable files, Ambari bug reports, and JavaScript function code. We show that Dazzle is practical to use and demonstrates promising improvement over existing state-of-the-art oversampling techniques such as SMOTE (e.g., with an average of about 60% improvement rate over SMOTE in recall among all datasets). Conclusion: Based on this study, we would suggest the use of optimized GANs as an alternative method for security vulnerability data class imbalanced issues.more » « less
-
Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization.more » « less
-
In order that the general public is not vulnerable to hackers, security bug reports need to be handled by small groups of engineers before being widely discussed. But learning how to distinguish the security bug reports from other bug reports is challenging since they may occur rarely. Data mining methods that can find such scarce targets require extensive optimization effort. The goal of this research is to aid practitioners as they struggle to optimize methods that try to distinguish between rare security bug reports and other bug reports. Our proposed method, called SWIFT, is a dual optimizer that optimizes both learner and pre-processor options. Since this is a large space of options, SWIFT uses a technique called 𝜖-dominance that learns how to avoid operations that do not significantly improve performance. When compared to recent state-of-the-art results (from FARSEC which is published in TSE’18), we find that the SWIFT’s dual optimization of both pre-processor and learner is more useful than optimizing each of them individually. For example, in a study of security bug reports from the Chromium dataset, the median recalls of FARSEC and SWIFT were 15.7% and 77.4%, respectively. For another example, in experiments with data from the Ambari project, the median recalls improved from 21.5% to 85.7% (FARSEC to SWIFT). Overall, our approach can quickly optimize models that achieve better recalls than the prior state-of-the-art. These increases in recall are associated with moderate increases in false positive rates (from 8% to 24%, median). For future work, these results suggest that dual optimization is both practical and useful.more » « less
An official website of the United States government
